心理技术与应用 ›› 2024, Vol. 12 ›› Issue (12): 705-712.

• •    下一篇

人机协同背景下建议来源和建议寻求动机对建议采纳的影响

  

  • 出版日期:2024-12-01 发布日期:2024-12-02

The Impact of Advice-seeking Motivation and Advice Source on Advice Taking in the Context of Human-machine Collaboration

  • Online:2024-12-01 Published:2024-12-02

摘要:

来自算法的建议并不总是由AI独立给出的,还有可能是专家使用AI(即人机协同)给出的。而目前少有研究探讨人机协同背景下决策者的建议寻求动机对建议采纳的影响。本研究采用疾病预测材料探讨人机协同背景下建议来源和建议寻求动机对建议采纳的影响。研究1采用单因素(建议来源:专家/AI/人机协同)被试间设计,发现相对于AI给出的建议,决策者更多采纳人机协同给出的建议,而对人机协同给出的建议和专家单独给出的建议,建议采纳没有显著差异。研究2采用2(建议来源:专家/人机协同)×3(建议寻求动机:关系动机/准确动机/控制组)被试间设计,发现决策者对人机协同的建议采纳多于对专家的建议采纳,关系动机条件下的建议采纳多于准确动机条件下的建议采纳。研究结果表明人们愿意采纳人机协同给出的建议。

关键词: 关系动机, 准确动机, 建议采纳

Abstract:

Advice from algorithms are not always provided independently by AI, but may also be jointly provided by experts and AI, that is, human-machine collaboration. So, in the context of human-machine collaboration, there is currently little research exploring the impact of decision makers' advice-seeking motivations on advice taking. Therefore, this study explores the impact of advice source and advice-seeking motivation on advice taking in the context of human-machine collaboration, using disease prediction materials. Study 1 employed a single-factor (advice source: expert/AI/human-machine collaboration) between-subjects design and found that decision-makers took advice from human-machine collaboration more than those from AI, while there was no significant difference between the advice taking from human-machine collaboration and experts. Study 2 used a 2 (advice source: expert/human-machine collaboration) × 3 (advice-seeking motivation: relational motivation/accuracy motivation/control group) between-subjects design and found that decision-makers took advice from human-machine collaboration more than those from experts. Additionally, the advice taking was higher under the relational motivation condition than under the accuracy motivation condition. The results of this study indicate that people are willing to accept advice given by experts using AI

Key words: human-machine collaboration, relational motivation, accuracy motivation, advice taking

中图分类号: 

  • B849
[1] 任玉冰. 建议距离与建议者表情对建议采纳的影响 [J]. 心理技术与应用, 2023, 11(6): 357-365.
[2] 李思贤 陈佳昕 宋艾珈 王梦琳 段锦云. 人们对人工智能建议接受度的影响因素 [J]. 心理技术与应用, 2022, 10(4): 202-214.
[3] 郭玲霄, 王亚婷, 杜秀芳. 具体情绪对个体建议采纳的影响[J]. 心理技术与应用, 2022, 10(1): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 辛自强, 张红川, 孙铃, 于泳红, 辛志勇. 财经素养的内涵与三元结构[J]. 心理技术与应用, 2018, 6(8): 450 -458 .
[2] 张红川, 苏 凇, 吕杰妤, 张 梅, 辛自强. 基于理性决策的财经能力:概念、结构与测量[J]. 心理技术与应用, 2018, 6(8): 465 -471 .
[3] 张晶晶, 余真真, 田 浩. 亲环境行为的情理整合模型:生态情感卷入的作用[J]. 心理技术与应用, 2018, 6(8): 484 -492 .
[4] 余习德, 鲁 成, 高定国. 时间流逝感与时间观、人格之间的关系研究[J]. 心理技术与应用, 2018, 6(8): 493 -502 .
[5] 陈必忠. 社交网站积极自我呈现与主观幸福感:多重中介模型[J]. 心理技术与应用, 2018, 6(9): 528 -536 .
[6] 张红川. 从转化研究的角度理解心理学在社会服务中的功用[J]. 心理技术与应用, 2018, 6(10): 580 -581 .
[7] 周莉. 学生心理健康服务可从学校和家长入手[J]. 心理技术与应用, 2018, 6(10): 599 .
[8] 潘超超, 周爱保, 刘锦涛, 谢 珮. 情绪诱发情景下情绪面孔的注意偏向研究[J]. 心理技术与应用, 2018, 6(10): 600 -605 .
[9] 姜永志, . 青少年问题性移动社交媒体使用评估问卷编制#br#[J]. 心理技术与应用, 2018, 6(10): 613 -621 .
[10] 王景玉, 曲可佳. 学习判断的线索利用模型及其潜在机制[J]. 心理技术与应用, 2018, 6(10): 629 -640 .